Homework 2.3

Total: 20 points

E.32 As we discussed in class, the impulse (change in momentum) is the same for both cases (you come to a complete stop in both cases). The force required to stop you is $F = \Delta p/t$ (impulse/time). So the shorter the time, the larger the force (and the more pain) to stop you.

E.33 To avoid accelerating when pushed on with a force, the villain would have to have infinite mass. That's impossible (conservation of momentum).

E.34 Conservation of angular momentum. If there is no outside torque acting on the system, angular momentum is conserved. This can also be concluded from Newton's third law: an object in (rotational) motion will remain in (rotational) motion.

E.36 Conservation of angular momentum. The initial angular momentum is zero (and will remain zero, without an interfering outside torque). So, if your body spins to the right a bit, the chair spins to the left a bit, to maintain the total angular momentum at zero. For the same reason (conservation of angular momentum); when you stop moving, the chair will also stop moving.

E.41 Sliding friction converts some of the gravitational potential energy into thermal energy. When the pole is slippery most of the gravitational potential energy is converted into kinetic energy (only a small fraction into thermal energy).

7 P.8
$$\vec{p} = m \cdot \vec{v}$$

 $\vec{p} = 0.000 \ \text{kg} \cdot 1 \frac{m}{5}$
 $\vec{p} = 0.000 \ \text{kg} \frac{m}{5}$
 $\vec{p} = 0.0001 \ \text{kg} \frac{m}{5}$
 $\vec{p} = 0.0001 \ \text{kg} \frac{m}{5}$
 $\vec{p} = 2400 \ \text{kg} \frac{m}{5}$
 $\vec{p} = 2400 \ \text{kg} \frac{m}{5}$
 $\vec{p} = 2400 \ \text{kg} \frac{m}{5}$
 $\vec{p} = 7 \cdot t$
 $t = \frac{\Delta P}{F}$
 $t = \frac{2400 \ \text{kg} \frac{m}{5}}{200 \ \text{N}}$
 $t = \frac{125 \ \text{M}}{5}$

- 2 P.12 again sp= 2400kg 5 op= F.t. F= ZP F= 2400 kg 35 F= 24,000 N (2) initial momenteur is zero, so final-momenteur (after push) is zero. P.13 => If your momentum is 450kg. 5 to the left, your friends momentum is 450 kg. in to the right_ 10.00.00.00